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The operational momentum (OM) effect describes a cognitive bias whereby we overestimate the results
of mental addition problems while underestimating for subtraction. To test whether the OM emerges
from psychophysical characteristics of the mental magnitude representation we measured two basic par-
ameters (Weber fraction and numerical estimation accuracy) characterizing the mental magnitude rep-
resentation and participants’ performance in cross-notational addition and subtraction problems.
Although participants were able to solve the cross-notational problems, they consistently chose rela-
tively larger results in addition problems than in subtraction problems, thus replicating and extending
previous results. Combining the above measures in a psychophysical model allowed us to partially
predict the chosen results. Most crucially, however, we were not able to fully model the OM bias on
the basis of these psychophysical parameters. Our results speak against the idea that the OM is due
to basic characteristics of the mental magnitude representation. In turn, this might be interpreted as
evidence for the assumption that the OM effect is better explained by attentional shifts along the
mental magnitude representation during mental calculation.

Keywords: Mental number line; Attention; Operational momentum; Approximate number system;
Weber fraction.

Recent years have brought forward a surprisingly
strong representational association between
numbers and space, providing a psychological and
neural reification of the metaphor of the “mental
number line”. The SNARC (spatial–numerical
association of response codes) effect is often taken

as an indicator for an association of numerical mag-
nitude with space (Dehaene, Bossini, & Giraux,
1993): Left-sided responses are faster for smaller
numbers while right-sided responses are faster for
larger numbers. This has been interpreted as evi-
dence for a left-to-right oriented “mental number
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line” with smaller numbers being located to the left
of larger numbers (at least in left-to-right reading
cultures; Shaki & Fischer, 2008; Shaki, Fischer,
& Petrusic, 2009). Additional evidence for a
spatial representation of numerical magnitude
comes from the observation that numbers can
shift spatial attention. That is, larger numbers
shift spatial attention to the right while smaller
numbers facilitate processing of left-sided stimuli
(Casarotti, Michielin, Zorzi, & Umiltà, 2007;
Fischer, Castel, Dodd, & Pratt, 2003; Galfano,
Rusconi, & Umiltà, 2006). Similarly, in a luminos-
ity decision task where participants had to select the
brighter of two greyscale stimuli, the numerical
magnitude of the superimposed numbers systema-
tically influenced performance (Nicholls, Loftus,
& Gevers, 2008). A leftward bias was observed
with small numbers while large numbers induced
a rightward bias. Patient studies add evidence to
the idea that number processing implies spatial
shifts of attention (Zorzi et al., 2012). Patients suf-
fering from spatial neglect were found to show rep-
resentational neglect when judging the numerical
midpoint of a given interval marked by two
numbers. For example, when asked for the mid-
point between 1 and 9 (correct answer is “5”)
these patients would provide “7” as response, as if
neglecting the left portion of the numerical interval
(Zorzi, Priftis, & Umiltà, 2002).

Only recently it has been found that the spatial
organization of the mental magnitude representation
might also have an impact on basic mental calcu-
lations—that is, addition and subtraction. When
adding or subtracting two nonsymbolic numerical
quantities (i.e., dot patterns) participants favoured
results that were larger than the actual outcome for
additions, while for subtraction problems partici-
pants preferred numbers that were smaller than the
actual outcome (McCrink, Dehaene, & Dehaene-
Lambertz, 2007). In reference to a similar effect in
visual perception, this bias was named the oper-
ational momentum (OM) effect. This effect is not
restricted to the nonsymbolic notation but was
demonstrated with symbolic numbers as well, point-
ing to a common underlying mechanism for mental
arithmetic in both notations (Knops, Viarouge, &
Dehaene, 2009; Pinhas & Fischer, 2008). This

implies that very similar mechanisms are involved
in symbolic and nonsymbolic calculation and is con-
gruent with the idea that symbolic calculation is
grounded in the innate ability to perceive and
process numerical magnitudes—that is, the
“number sense” (Dehaene, 2011). Converging evi-
dence suggests that the number sense represents a
crucial prerequisite for the development of adequate
symbolic calculation skills (Gilmore, McCarthy, &
Spelke, 2010; Halberda, Mazzocco, & Feigenson,
2008; Park & Brannon, 2013; for a review see
Piazza, 2010). The number sense represents numeri-
cal magnitude information in an approximate,
language-independent, and analogue fashion.
Humans share this system with other animals such
as rats (Meck & Church, 1983), monkeys (Merten
& Nieder, 2009; Nieder, 2012), birds (Emmerton
& Renner, 2006), and even fish (Agrillo, Dadda,
& Bisazza, 2007; Agrillo, Piffer, & Bisazza, 2010;
Dadda, Piffer, Agrillo, & Bisazza, 2009), implying
a common evolutionary origin. In line with this
claim, infants already show numerical discrimination
performance that is mainly defined by the ratio of
the to-be-compared numerosities (Izard, Sann,
Spelke, & Streri, 2009; Xu & Spelke, 2000; Xu,
Spelke, & Goddard, 2005).

Different explanations for the observed bias in
mental calculation are currently being discussed.
One idea, originally expressed by McCrink et al.
(2007), assumes that arithmetic operations are
carried out on compressed magnitude scales. That
is, the internal magnitude scale is thought to be log-
arithmically compressed (Dehaene, 2003; Stoianov
& Zorzi, 2012). McCrink et al. (2007) assumed
that the cognitive system “undoes” the compression
during mental calculation, operating on uncom-
pressed magnitudes. This process of uncompression
may be subject to a systematic bias, which results in a
slightly compressed magnitude code during calcu-
lation. This compressive bias may in turn cause the
OM. A simple example illustrates this idea.
Imagine a participant adds two numbers—for
example, 20+ 5. Internally, these are represented
as log10(20)= 1.301 and log10(5)= 0.699. In the
most extreme case, if uncompression failed comple-
tely, participants would operate on the log-scaled
values and add log10(20)= 1.301 and log10(5)=
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0.699. Adding two logarithms corresponds to multi-
plying their linear-scaled values, and in most cases
this would result in values larger than the actual
outcome. A similar argument holds for subtraction,
which would be replaced by division. Clearly, the
bias produced by applying this mechanism to logar-
ithmically compressed magnitudes is larger than the
relatively small bias observed in actual OM exper-
iments. However, even a partial inaccuracy in com-
pression and uncompression might provide a
plausible explanation of the operational momentum
effect and was implemented in a computational
model by Chen and Verguts (2012).

A second explanation of the operational momen-
tum entails shifts of spatial attention along the mental
magnitude representation. When adding (subtract-
ing) two numbers, spatial attention is shifted to the
right (left) along the mental number line, moving
participants “too far” on the representation to the
right (left), which in turn leads to an overestimation
(underestimation) with respect to the correct
outcome. This notion has received support from neu-
roimaging (Knops, Thirion, Hubbard, Michel, &
Dehaene, 2009) and behavioural studies (Knops,
Zitzmann, & McCrink, 2013).

Despite assuming different mechanisms, both
theories are based on the idea that symbolic arith-
metic is grounded in the approximate number
system (ANS) and the notion of the mental
number line. If mental calculation is grounded in
the ANS, then the individual performance in
(non)symbolic calculation tasks might be correlated
with other indices describing crucial properties of
this system in the individual participant. Here, we
set out to test this idea by examining whether the
size of the OM effect correlates with other proper-
ties of the number system.

Humans vary in two basic properties of the
ANS. First, the individual acuity by which two
(nonsymbolic) quantities can be distinguished
varies between participants. The acuity can be
expressed by a simple parameter, the Weber frac-
tion. The Weber fraction describes the pro-
portional numerical difference by which two given
numerosities must differ to attain a fixed perform-
ance level. The Weber fraction has been shown to
correlate with mathematical abilities in children

(Piazza et al., 2010) underlining the close link
between basic numerosity perception and basic
mental arithmetic. Moreover, even in an educated
adult population the Weber fraction is correlated
with symbolic mathematical achievement level
(Agrillo, Piffer, & Adriano, 2013; Halberda, Ly,
Wilmer, Naiman, & Germine, 2012). Second, par-
ticipants’ estimation of the number of items in a
given set diverges from the actual number, usually
in the direction of underestimation. The amount
of underestimation varies between participants
(Izard & Dehaene, 2008). This can be comprehen-
sively described by regressing from the logarithm of
the shown number of items in a display on the log-
arithm of the estimated number of items in a
numerosity estimation task.

In this study we aim to describe in more detail
how mental arithmetic is grounded in the ANS
by exploring the association between basic psycho-
physical parameters of this system and performance
in simple mental arithmetic. That is, by combining
basic psychophysical parameters capturing the core
properties of the ANS, we seek to predict partici-
pants’ performance in simple mental arithmetic
tasks and specify how the operational momentum
relates to the ANS. In detail, we reasoned that
the overall underestimation in previous studies on
the operational momentum (see Knops, Viarouge,
et al., 2009, for example) might be the consequence
of an overall miscalibration in estimating (i.e.,
underestimation) the number of items in a visual
set. According to the compression–decompression
hypothesis, the operational momentum effect
itself might be linked with the overall acuity of
the ANS, with higher overall acuity leading to
less operational momentum due to more efficient
and more accurate compression/decompression
mechanisms.

Method

Participants and overall procedure
Fourteen participants (5 female, 9 male; mean age:
22.1 years) were presented with three tasks in two
sessions. Participants were remunerated with
12.75 euros for participation. Each session lasted
about 1 hour. The two sessions took place on
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separate days, approximately a week apart. The
tasks administered were (a) a numerosity estimation
task where participants were presented with dot pat-
terns and had to provide the numerical estimate of
the presented set, (b) a nonsymbolic numerosity
comparison task in which participants were asked
to indicate the larger of two numerosities, and (c)
an approximate calculation task. The calculation
task comprised addition and subtraction problems
with operands and results either being presented in
a common notation (i.e., Arabic numerals or dot pat-
terns) or in different notations (cross-notational). In
all cases both operands were presented in the same
notation. In cross-notational trials, both operands
were presented in one notation (e.g., Arabic
numerals), and the response alternatives in the
other notation (e.g., dot patterns). No feedback was
provided to the participants in the three paradigms.

Participants were seated at a distance of about
60 cm from the monitor. No chin rest was used.

Numerosity estimation task
Stimuli. We presented the decade numbers
between and including 10 and 110 as black dots
against a white circular background (diameter:
240 pixels corresponding to approximately 6°
visual angle) on an otherwise black screen.

Two sets of dot patterns were used: In one set, dot
size was kept constant across dot patterns with differ-
ent numerosities. This procedure leads to a confound
between nonnumerical cues (i.e., the total occupied
area) and numerosity, since both parameters were
necessarily positively correlated. For example, when
keeping the individual dot size and density constant,
increasing the numerosity will increase the overall
area occupied by the set (also sometimes referred to
as convex hull; Gebuis & Reynvoet, 2011). In the
second set of dot patterns, dot size changed with
changing numerosity while total occupied area was
kept constant across the set. Thus, total occupied
area could not serve as a cue for distinguishing
between the different numerosities.

To avoid memorization effects due to repetition
of a particular stimulus, on each trial the stimulus
images were randomly chosen from a set of 10 pre-
computed images with the given numerosity and a
given control over nonnumerical parameters. The

Matlab code for generating these stimuli has been
provided by Dehaene and colleagues (Dehaene,
Izard, & Piazza, 2005) and can be found on the
unicog website (http://www.unicog.org/pm/
pmwiki.php/Main/Arithmetics).

Procedure. Each trial started with the presentation
of a fixation cross in the middle of the screen for
500 ms. The fixation cross was replaced by the
dot pattern for 300 ms. After the dot pattern disap-
peared, participants provided their estimation of
the presented numerosity using a standard key-
board. Participants had unlimited time and were
given the chance to correct their estimates if they
wished to. No feedback was provided during
instruction or testing.

Each numerosity was presented 20 times: 10
times with constant dot sizes across numerosities,
10 times with varying dot sizes across numerosities.
In total, 220 trials were presented.

Numerosity comparison task
Stimuli. The stimulus set comprised two standard
numerosities (16 and 32) that had to be compared
against two sets of deviant stimuli (one set for each
standard). The deviant numerosities for the stan-
dard 16 consisted of the numerosities 10, 12, 13,
14, 15, 17, 18, 19, 20, and 22. For the standard
32, these deviants were doubled (i.e., 20, 24, 26,
28, 30, 34, 36, 38, 40, and 44). The to-be-com-
pared numerosities were presented as black dot pat-
terns against a white circular background on an
otherwise black screen in a horizontal layout. The
same way of controlling for nonnumerical par-
ameters as that for the number estimation tasks
was employed, resulting in two different sets of
dot patterns (size and surface). On each trial,
both numerosities were drawn from the same set
of dot patterns—that is, either total occupied area
or dot size was constant across different numeros-
ities. Each standard–deviant pair was presented
32 times, 16 times for each set of dot patterns.

Procedure. Each trial began with the presentation of
a fixation cross in the middle of the screen for 1000
ms, which was replaced by the pair of numerosities.
After 300 ms, the two dot patterns disappeared,
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and a question mark appeared in the centre of the
screen signalling participants to indicate via
button press which side of the screen the larger
numerosity was presented on. Each standard–
deviant pair was presented 16 times for each set
of dot patterns. This resulted in a total of 640
trials—16 (repetitions)× 20 (pairs)× 2 (dot
pattern sets)—completed in two sessions of 320
trials on two days. Each session was preceded by
10 practice trials.

Calculation task
Stimuli. Two different problems were chosen for
each arithmetic operation (addition and subtrac-
tion). In all cases the first operand was 50 (plus or
minus a random number between 1 and 8 to jitter
the starting numerosity). As second operand
either a small numerosity of 6 (plus or minus a
random number between 0 and 3) or a large numer-
osity of 26 (plus or minus a random number
between 0 and 3) was presented. Correct results
varied between 13 and 87. Apart from the correct
result, 8 deviant results were created for each arith-
metic problem. These deviants were arranged as a
geometric series (i.e., were linearly spaced on a log-
arithmic scale). Technically, they were generated as
round(c× ri/4), where c is the correct result, i ranges
from −4 to +4, and r describes the maximal poss-
ible ratio between correct outcome and deviants.
Parameter “r” was set to 2.5 for problems with non-
symbolic stimuli and 1.41 for the purely symbolic
problems. This differentiation was introduced to
increase the precision by which we would be able
to detect a given bias in the purely symbolic trials.
Previous experiments (Knops, Viarouge, et al.,
2009) have shown that the possibility to rely on
verbal labelling and recall from long-term
memory makes it more difficult for nonverbal,
approximate number codes or attentional biases to
influence the participants’ choices.

To discourage participants from using a strategy of
always selecting the response falling in the middle of

the trial’s numerical range, only seven out of those
nine possible results were presented. In 50% of the
trials, we presented the upper seven (high range),
and thus the correct result was the fifth largest
numerosity (although numerosities were randomly
mixed). In the other 50% of the trials, the lower
seven choices were shown (low range), and the
correct result was therefore the third largest numeros-
ity. Because the experimental design was organized
around a small number of arithmetic problems, it
was important to prevent subjects from memorizing
them in symbolic form. To this aim, the problems
and their proposed results were randomly “jittered”,
differently on each trial. First, the operands were jit-
tered by a random value from 0 to+2, such that the
actual outcome would remain unchanged (i.e., for a
given task 48+ 23, the jittered operands could be
47+ 24). Second, all of the seven proposed response
alternatives were jittered up or down by a random
value (fixed for a given trial). This random value
had a mean value of zero and was drawn from a flat
distribution on a logarithmic scale, in the range +
half of the numerical interval between the correct
result and the first deviant above or below it.
Technically, this was achieved by drawing a random
number r between −0.5 and 0.5 and defining the
proposed results as round, c× 2(r+i)/4, where i again
ranges from −4 to +4. To encourage the use of
approximate calculation we ensured that the correct
outcome would never appear as a response alternative.

Operands and results were presented in two
notations—that is, as Arabic digits or as dot pat-
terns. The operands’ and results’ notation was
varied in a full factorial design, yielding four
possible conditions (digits–digits, digits–dots,
dots–digits, and dots–dots). All stimuli were dis-
played in black within a white circle, which was
presented against a black background. Each circle
had a diameter of 120 pixels (3.55 cm) at a
viewing distance of approximately 65 cm (no chin
rest was used). Due to a programming error,1 the
condition with Arabic operands followed by

1Due to the wrong use of a variable defining the lower boundary of the jittering range in the digits–digits condition, the presented

response alternatives were asymmetrically distributed around the correct outcome. The numerical range of response alternatives that

were smaller than the actual outcome was larger than the numerical range of those that were larger than the actual outcome.

Consequently, on average, participants chose values that were smaller than the actual outcome for both operations (addition and

subtraction).
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Arabic results (digits–digits) was excluded from all
subsequent analyses.

Procedure. Each trial began with the presentation of
a fixation cross in the centre of the screen for 1000
ms, followed by the appearance of an instructional
letter (“A” for addition or “S” for subtraction)
informing participants about the subsequent oper-
ation to be performed. After 1200 ms the instruc-
tional letter was replaced by the first operand,
which remained on screen for 1400 ms. The
second operand replaced the first one immediately
and remained equally visible for 1400 ms. The
operands were presented successively in the
centre of the screen. Finally, the screen was
emptied, and seven response alternatives appeared,
one by one, with a delay of 200 ms between suc-
cessive operands at one of seven possible locations.
The temporal order in which the seven locations
appeared was randomized for each trial. After all
alternatives were present on screen, the mouse
pointer appeared in the centre of the screen, and
the participants had to indicate by clicking on
the images which numerosity was numerically
closest to the actual result. Speed was stressed
over accuracy to maximize the use of approxi-
mation strategies and to avoid explicit calculation
(Arabic numerals) or counting (dot patterns).
The results were presented at seven locations
arranged around the screen centre in an ellipsoid
fashion. The seven proposed outcomes were coun-
terbalanced in a Latin square, such that each of the
seven response alternatives in the high or low
response range appeared once at every position.

Results

Numerosity estimation task
If participants were able to accurately estimate the
numerosity of the dot patterns, the mean estimate
should increase linearly with the number of dots
in the stimulus. To evaluate this relationship, we
used log–log regression, which corresponds to
fitting the data with a power law whose exponent
should be 1 for a linear relationship. When regres-
sing the log of the shown number against the log of
the given estimate, an excellent linear fit was

observed (R2= .9991), and the slope of the
regression function (mean= .51, SD= .20) for
the 14 participants was significantly larger than
zero, t(13)= 9.67, p, .001, but significantly
smaller than 1, t(13)= −9.24, p, .001, indicating
that participants underestimated the number of
dots in a given display (see Figure S1 in
Supplemental Material).

If the underestimation exhibits scalar variability,
standard deviation should increase proportionally
with increasing mean estimates on a linear scale,
yielding a constant coefficient of variation (CV)
with a regression slope that does not differ from
zero. Indeed, the CV remained constant over the
range of numerosities with a slope (mean=
−0.0001, SD= 0.0004) that did not significantly
differ from zero, t(13)= −1.35, p= .20.

In line with results from previous numerical esti-
mation studies, participants showed large variance
in their amount of underestimation. Although
most participants underestimated significantly, the
slopes of the log–log regression of number against
their individual estimates ranged from b= 0.24
(a massive underestimation) to b= 1.02 (a well-
calibrated estimation).

Numerosity comparison task
The observed pattern of performance in the numer-
osity comparison task is in keeping with results
from previous studies employing a similar task
(Piazza, Izard, Pinel, Le Bihan, & Dehaene,
2004; van Oeffelen & Vos, 1982; see also Figure
S2 in Supplemental Material). The percentage of
“larger” responses increased with increasing
number of dots in the set, for both standards (16
and 32).

While the distribution of “larger” responses for
the larger standard numerosity is broader on
linear scale (see Figure S2, left), both curves
become symmetric, once transformed to log-scale.
This indicates that participants’ performance
follows the predictions derived from Weber’s law.
Applying a curve-fitting algorithm as described in
the supplementary material to Piazza et al.
(2004), we pitted the goodness of fit indices from
linear and logarithmic scales against each other.
While both functions explained a large amount of

6 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2014

KNOPS ET AL.

D
ow

nl
oa

de
d 

by
 [

H
um

bo
ld

t-
U

ni
ve

rs
it&

au
m

l;t
 z

u 
B

er
lin

 U
ni

ve
rs

it&
au

m
l;t

sb
ib

lio
th

ek
],

 [
A

nd
re

 K
no

ps
] 

at
 0

1:
10

 1
4 

M
ar

ch
 2

01
4 



variance in the data (R2 linear = .874, R2 logarith-
mic= .947), the amount of explained variance (R2)
was significantly higher for the logarithmic model,
t(13)= 7.14, p, .0001. The internal Weber frac-
tion (w; see Piazza et al., 2004, for details)
derived from these analyses was w= 0.224 for a
standard of 16 and w= 0.264 for a standard of
32. The average internal Weber fraction over
both numerosities was w= 0.243.

Mental calculation task
As can be seen in Figure 1, the values chosen by
participants increased as a function of the correct
outcomes. To statistically validate this impression,
we computed, separately for each notation, a
regression of correct values on chosen values. If

participants’ choices systematically increase with
correct values, regression slopes should be
larger than zero. Indeed, all mean beta
coefficients were significantly larger than zero (all
ps, .001), with only the slope for addition in the
dots–dots condition being significantly different
from one, t(13)= 4.3, p= .001 (all other
ps. .348).

To further corroborate the impression that par-
ticipants were readily able to solve the presented
nonsymbolic and cross-notational calculation pro-
blems and to test the impact of notation and oper-
ation on the performance, a response bias was
computed as follows. After transforming the data
to log-scale we subtracted the correct outcome of
the calculation problem in each trial from the

Figure 1. The correct outcomes of the presented arithmetic problems plotted against the value chosen by participants, separately for each notation

and operation. Mean R2 is provided for each condition. Each data point corresponds to one trial. All participants’ data have been merged

together. Grey diagonal indicates correct performance.
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value the participant had chosen in this trial, separ-
ately for each notation and operation. The outcome
was a measure of response bias, expressed as the log
ratio of the selected and actual results. The distri-
butions of response bias were clearly peaking at or
near zero, indicating that participants were not ran-
domly selecting their responses (see Figure S3 in
Supplemental Material). In order to evaluate the
effect of the mental arithmetic operation on this
measure of response bias, we computed a 3× 2
repeated measures analysis of variance (ANOVA)
with notation (dots–digits, digits–dots, and dots–
dots) and operation (addition, subtraction) as
factors. We observed a main effect for notation,
with overall larger values for the digits–dots con-
dition than for the other conditions, F(2, 26)=
34.221, MSE= 0.729, p , .001, ε= .58. Most
importantly, we observed overall larger values for
addition than for subtraction—the operational
momentum effect, F(1, 13)= 4.84, MSE=
0.163, p, .001. To analyse the significant inter-
action between those two factors, F(2, 26)=
14.83, MSE= 0.029, p, .001, we used pairwise
post hoc t tests. These analyses revealed a signifi-
cant OM effect in all notations [dots–dots, t
(13)= 6.54, p, .0001; dots–digits, t(13)= 4.12,
p= .0012; digits–dots, t(13)= 2.447, p= .029].
In previous studies the effect in purely symbolic
notation was much smaller than in purely nonsym-
bolic conditions, indicating the use of verbally
mediated quantity codes, allowing for a higher pre-
cision (Knops, Viarouge, et al., 2009). To test
whether the interaction between notation and

operation was due to a reduced OM in mixed nota-
tion conditions, we subtracted the above-reported
response bias for subtraction from the response
bias for addition, separately for each notation, and
submitted the resulting OM bias to a one-factorial
repeated measures ANOVA. Table 1 summarizes
the observed response bias. Indeed, the OM
effect was larger in the purely nonsymbolic con-
dition (dots–dots) than in the mixed notation con-
ditions [t(13)= 5.00, p, .001, and t(13)= 4.56,
p= .001, for dot–dots vs. digits–dots and dots–
dots vs. dots–digits, respectively]. No significant
difference was observed between mixed notation
conditions, t(13)= 1.02, p= .325.

As can be seen in Table 1, the OM effect did not
take the form of a full cross-over effect with a posi-
tive bias for addition and a negative bias for sub-
traction but remained present in form of a relative
difference between addition and subtraction with
more negative values for subtraction than for
addition. Consistent with results from previous
experiments (Izard & Dehaene, 2008; Knops,
Viarouge, et al., 2009), we observed an overall ten-
dency towards underestimation in the dots–dots
condition as well as in the dots–digits condition.
For the reverse cross-notational condition (digits–
dots) we observed an overall tendency of overesti-
mating the results with respect to the actual
outcome.

A psychophysical model of approximate calculation
If these overall biases are linked to the individual
miscalibration of the internal transcoding we

Table 1. Mean response bias in the actual data and in the predictions made by the compression–decompression model, separately for each

notation and operation

Response bias data

(chosen – correct)

Response bias model

(predicted – correct)

Data – model

(chosen – predicted)

Notation Addition Subtraction Addition Subtraction Addition Subtraction

Digits – dots 0.1396 0.1008 0.3246 0.2185 −0.1850 −0.1177

Dots – digits −0.0643 −0.1287 0.0766 −0.1652 −0.1408 0.0365

Dots – dots −0.0052 −0.1641 0.0764 −0.1595 −0.0816 −0.0046

Note: Values for response bias data denote mean response bias in the actual data; values for response bias model denote mean response

bias in the predictions made by the compression–decompression model; values for data –model denote the difference between actual

observed data and model prediction (i.e., chosen values minus model predictions).
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should be able to correct for the bias on the basis of
the individually measured transcoding performance
in the numerosity estimation task. Note that in
theory no transcoding was necessary in the dots–
dots condition. Nevertheless participants might
have engaged in such a transcoding strategy (a) to
facilitate the arithmetic operation and (b) since
they could not predict the notation of the final
display, which could be either in the dot format
or in the Arabic digits format.

In order to investigate whether the individual
amount of underestimation as measured in the esti-
mation task is linked to the perception of the
numerosity in the cross-notational calculation
task, we assumed a basic sequence of cognitive
steps. First, participants see and perceive the oper-
ands. In case of nonsymbolic operands, this step
entails the application of an individual underesti-
mation factor as measured in the numerosity esti-
mation task (i.e., using the individual regression
equation) to the nonsymbolic operands in each
trial to estimate the individually perceived numer-
osity. The actual calculation process (addition or
subtraction) is then applied to the individually per-
ceived numerosities. This second step yields the
most probable, individually biased result in a
given trial, which is finally compared to the pre-
sented response alternatives on screen. Finally, to
model the internal comparison between the result
of the arithmetic operation and the response
alternatives we applied the inverse perceptual bias
in a third step.

It is well known that the perceived numerosity
for a given number is subject to individual trial-
to-trial fluctuations, which can be well described
by the Weber fraction, indexing the accuracy of
the numerosity perception in each individual
participant. The Weber fraction defines a range
within which participants cannot accurately
distinguish between different numerosities. This
means that the numerical magnitude of
the internally represented operands (i.e., the indi-
vidually perceived numerosities) varies within a
certain range of subjective equality. To determine
the subjective equality range we multiplied (or
divided) the individually perceived operands
with (by) the individual Weber fractions, which

resulted in the upper and lower boundaries of
the subjective equality range for each operand. In
sum we combined the individual measures from
the three tasks in a simple model in order to
more adequately capture the most prominent be-
havioural signatures of the performance in a
cross-notational mental calculation paradigm. The
model can be summarized as follows:

For each participant p in trial i the individually
perceived nth operand Opin is computed by taking
into account the individual underestimation as
determined by the numerosity estimation task
[Opin= log10(ap + bp ×Opin)] and adding the sub-
jective equality range as determined by the numer-
osity comparison task [boundpin_up=Opin+
log10(1+wp); boundpin_low=Opin− log10(1+
wp)]. For participant p in trial i the predicted
result PRpi results from the addition/subtraction
of the individually perceived operands: PRpi=
log10[10^(Opi1)+ 10^(Opi2)]. For participant p
in trial i the subjective equality range around PRpi

is defined by adding up the upper and lower bound-
aries (boundpin_up and boundpin_low) around the
individual operands (Opi1 and Opi2).

The chosen result on an individual trial (CRpi)
was considered as “predicted” if it fell within the
subjective equality range around PRpi.

This model was adjusted to the hypothesized
processes in each notation condition. That is, for
the digits–dots condition, no underestimation or
uncertainty range for the Arabic operands was
assumed. Instead, the inverse of the linear
regression model from Task 1 was used to define
the amount of overestimation when comparing
the internal symbolic representation of the
outcome with the nonsymbolic quantities presented
as response alternatives. A subjective equality
range was centred on this transcoded quantity
only. A comparable correction by the inverse of
the linear regression was applied to the other nota-
tions to compensate for the final transcoding that is
assumed to allow for the match between internal
quantity representation of the problem’s outcome
and the externally presented nonsymbolic quantities
(i.e., response alternatives).

Figure 2 shows the chosen values in each trial for
all participants against the values that were

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2014 9

PSYCHOPHYSICS OF OPERATIONAL MOMENTUM

D
ow

nl
oa

de
d 

by
 [

H
um

bo
ld

t-
U

ni
ve

rs
it&

au
m

l;t
 z

u 
B

er
lin

 U
ni

ve
rs

it&
au

m
l;t

sb
ib

lio
th

ek
],

 [
A

nd
re

 K
no

ps
] 

at
 0

1:
10

 1
4 

M
ar

ch
 2

01
4 



predicted (accounted for) by the above model as
black crosses. If the model perfectly predicted the
participants’ performance, the chosen values
would increase linearly with the predicted result,
with a slope approaching 1. Additionally, the
chosen values would be symmetrically distributed
around the mean predicted values, indicated by
the linear regression slope (grey line). If, however,
mental arithmetic is subject to additional influ-
ences—such as the operational momentum—the
chosen values should systematically deviate from
the above linear regression slope with an intercept
of zero and a slope of 1. Indeed, we observed a
linear increase of the chosen values with the pre-
dicted outcome, indicating that the simple model
proposed here captured parts of the performance
in the approximate calculation problems.

The simple model we used here to predict per-
formance in simple approximate calculations cap-
tures major aspects of the observed variance.
Since we aimed at testing whether the operational
momentum effect can be explained by basic par-
ameters of the ANS, we next analysed whether
the model predictions exhibit similar response
biases to the observed behaviour, which would
argue against the idea that the OM can be
explained by basic ANS parameters. Figure 3
depicts the model predictions as a function of
correct outcomes, separately for each notation and
operation. The model predictions correlate with
the correct outcome, yet with deviations from the
diagonal, which correspond roughly with those
observed in actual data (compare Figure 3 and
Figure 1). This observation suggests that the

Figure 2. Predicted values of the model (x-axis) against the chosen values (y-axis) for all participants in different notations and operations.

Left column: addition; right column: subtraction; first row: dots–dots; second row: dots–digits; third row: digits–dots. Values within the

predicted range are shown as black crosses, and values outside the predicted range are shown as grey asterisks. Each data point represents

one trial. Note that data points may be superimposed if identical. The light-grey diagonal indicates perfect correspondence between model

prediction and observed performance.
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proposed model, as expected, captures the general
trend of operational momentum effects in the data.

Table 1 summarizes the actual and predicted
response bias (i.e., log chosen/predicted values
minus log correct outcome), separately for each
notation and operation. Additionally, we report
the mean difference between the model prediction
and the observed values for response bias. If the
model captured the operational momentum bias,
this difference should be centred on zero.
However, as can readily be seen, in these residuals
(chosen – predicted), additions now show a more
negative deviation than subtraction. Furthermore,
for notations with nonsymbolic operands (dots–
dots and dots–digits) the model exhibits a cross-
over effect with additions being predicted too

large and subtractions being predicted as too
small relative to the correct outcome.

To finally test whether the model can explain the
operational momentum, we computed a linear
regression where we tried to predict the observed
operational momentum bias (i.e., chosen values
minus correct outcome) on the basis of the model
prediction. The question can be reformulated as
follows: Does the model, by including for each indi-
vidual trial the participants’ overall miscalibration in
estimation and the precision of the ANS, provide
values that are significantly related with the observed
over- and underestimation in addition and subtrac-
tion? The result can be seen in Figure 4 where we
plotted the observed response bias (chosen values –
correct outcome) against the predicted response

Figure 3. Predicted values of the model (y-axis) against the correct values (x-axis) for all participants in different notations and operations.

Both axes are in log scale. Top row: addition; bottom row: subtraction; first column: digits–dots; second column: dots–digits; third column: dots–

dots. Each data point represents one trial. Note that data points may be superimposed if identical. The light-grey diagonal indicates perfect

correspondence between model prediction and correct outcome.
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bias from the model (model prediction – correct
outcome). As can be seen in the overall poor
amount of explained variance (R2 between .047
and .153), the model does not capture the operation
specific bias that leads to the operational momentum
effect. More specifically, the over- and underestima-
tion do not seem to correlate with the model
prediction.

To further analyse the association between basic
properties of the ANS and the operational momen-
tum effect, we computed pairwise Pearson corre-
lation coefficients between individual subjects’
operational momentum, estimation bias, and
Weber fraction, separately for each notation and
operation. Results are summarized in Table 2.
Operational momentum correlated with the

overall miscalibration during numerosity esti-
mation in cross-modal condition. However, no cor-
relation was found in purely nonsymbolic notation
(dots–dots condition). Because this is the condition
with the largest OM effect (Table 1), our results
indicate that the parameters of the approximate
numerosity system do not seem capable of explain-
ing the OM effect.

Discussion

In the current study we investigated the relation
between the ANS and performance in approximate
addition and subtraction problems, in order to
specify in more detail how mental arithmetic is

Figure 4. Model predictions plotted against the response bias—that is, the difference between log chosen values and log correct outcomes—

separately for each notation (columns) and operation (top row: addition; bottom row: subtraction). Each data point corresponds to a single

trial. Identical values are superimposed. Grey diagonal represents perfect correlation between both variables. R2 denotes the mean explained

variance of the regression of the response bias from the model (i.e., model prediction minus correct outcome) on the operational momentum

bias (i.e., chosen value minus correct outcome), separately for each notation and operation.
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grounded in the ANS. The results from three
experiments (numerosity estimation, numerosity
comparison, and mental calculation) are well in
line with results from previous studies. First, in
the numerosity estimation task we found that the
number of items in a visually presented set is sys-
tematically underestimated. The amount of indi-
vidual underestimation was captured by a linear
regression on log-transformed values. In line with
earlier studies (Izard & Dehaene, 2008) this indi-
cates a miscalibration of the internal numerosity-
to-number mapping function, resulting in underes-
timation for most participants. Second, we
observed that data from the numerosity comparison
task were better fitted by a logarithmic scale than by
a linear scale, congruent with the assumption of a
logarithmically compressed mental number line
(Nieder & Miller, 2003). The observed mean
Weber fraction (w= 0.243) is well in line with pre-
vious results (Halberda et al., 2012; Izard &
Dehaene, 2008; Piazza et al., 2004). Third, per-
formance in the mental calculation task paralleled
to a large extent findings from previous studies
(Knops, Viarouge, et al., 2009; McCrink et al.,
2007). This includes an overall underestimation
of the final results in the dots–dots condition.
The cross-notational conditions were characterized
by an underestimation in the dots–digits condition
and an overestimation in the digits–dots condition
(which can be seen as a simple reversal of the same
tendency). These findings are compatible with the
hypothesis that the numerosity of dot patterns con-
tinues to be systematically underestimated during

the calculation task. Most crucially, we replicated
the operational momentum effect in all notations.
As observed in previous studies, the OM did not
take the form of a full cross-over but was present
in form of more negative values for subtraction
than for addition.

The current study, for the first time, allowed us to
test whether the observed overall underestimation in
mental calculation tasks involving nonsymbolic
stimuli is associated with the overall tendency to
underestimate the number of items in a set. To
test this assumption, we included individual psycho-
physical parameters in a simple model of mental cal-
culation. The values predicted by the psychophysical
model lined up nicely with the chosen values, as can
be seen in Figure 2. The majority of predicted values
fell close to the diagonal, which indicates an ade-
quate fit between model predictions and observed
data. Hence, the overall miscalibration in cross-
notational mental calculation task can by and large
be explained by the individual response bias in
numerosity estimation task in combination with
the individual accuracy of the ANS. It has been
argued that the performance in numerosity esti-
mation tasks is defined by the characteristics of the
mental magnitude representation—that is, spatial
layout (mental number line), logarithmic scaling,
Gaussian distribution of dispersion centred on acti-
vated number), and an internal response grid (Izard
& Dehaene, 2008). Hence, participants might rely
on a transcoding of nonsymbolic numerosities into
a single internal numerical scale during the course
of mental calculation.

Table 2. Pairwise Pearson correlation coefficients between the signed response bias and two psychophysical parameters—the Weber fraction and

the amount of underestimation in numerosity estimation

Notation r(RBA,w) r(RBS,w) r(RBA,est) r(RBS,est) r(OMA-S,w) r(OMA-S,est)

Digits–dots .25 .06 −.71* .41 .41 −.67**

Dots–dots .00 .05 −.16 .00 −.02 .315

Dots–digits −.50 −.41 .76* .42 −.03 −.12

Note: RB = response bias = chosen values – correct outcomes; w = Weber fraction; est = amount of underestimation in numerosity

estimation; OM = operational momentum; A = addition; S = subtraction. Smaller Weber fraction indicates better performance

during numerosity comparison task, and smaller regression slope in the estimation task means stronger underestimation. The

two right-hand columns denote the correlation between the “net” OM bias (i.e., response bias addition – response bias

subtraction) and the two psychophysical variables.

*p, .05. **p, .01.
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However, the model tested here did not fully
capture the operation-specific over- and underesti-
mation pattern—that is, the operational momen-
tum effect. When we tested directly whether the
model’s predicted response bias correlated with
the observed arithmetic bias, we found virtually
no explanatory value of the proposed model. The
overall direction of the response bias (i.e., numeri-
cally larger values for addition than for subtraction)
was roughly captured in group averages, but many
qualitative and quantitative details did not fit (see
Table 1). Relative to the correct outcome, contrary
to what was observed, the model predicted
negative values for subtraction and positive values
for addition, taking the form of a full cross-
over effect for cross-notational conditions.
Furthermore, interindividual variance in nonsym-
bolic number processing did not correlate with
the amount of operational-momentum effect.

This may suggest that the observed biases in
approximate mental arithmetic are due to factors
outside the ANS that were not included in the
current model. Amongst the currently discussed
theoretical accounts for the operational momen-
tum, the most parsimonious explanation postulates
that OM results from attentional shifts along the
mental number line during the course of mental
calculation (Knops, Thirion, et al., 2009; Knops
et al., 2013). The current data are in line with
this notion insofar as they support crucial character-
istics of the hypothesized underlying magnitude
representation. In detail, we observed evidence for
a logarithmically compressed mental magnitude
representation in the numerosity comparison task.
The results from the numerosity estimation task,
too, are in line with a recent model assuming a
spatially oriented, logarithmically compressed
mental number representation (Izard & Dehaene,
2008). It remains an open issue whether shifts of
spatial attention along the mental number line
induce the OM effect. Support for this claim
comes from a neuroimaging study (Knops,
Thirion, et al., 2009) where authors used brain
activity in posterior, superior parietal cortex elicited
by left- and rightward saccades to train a classifier.
The classifier successfully learned to predict
whether participants made saccades to the right

or to the left. Without further training, the
same classifier generalized to mental arithmetic
and successfully predicted whether participants
were solving addition or subtraction problems.
Addition problems were associated with neural
activity from rightward saccades, presumably since
participants shifted attention towards larger
numbers on the right side of the mental number
line. Further evidence for an association between
OM and attention comes from a recent study that
reports a strong correlation between reorienting in
a Posner paradigm and OM in 6-and-7-year-old
children (Knops et al., 2013).

An interesting dissociation between cross-nota-
tional conditions and the purely nonsymbolic con-
dition was observed. OM was larger in the purely
nonsymbolic condition, implying that exact verbal
coding during approximate mental calculation
might mitigate the influence of mechanisms
leading to OM. Alternatively, participants may
have a more precise, but still analogue represen-
tation of the quantity associated with Arabic
numerals (Dehaene, Spelke, Pinel, Stanescu, &
Tsivkin, 1999; Fias & Verguts, 2004).

To summarize, the present study provides for
the first time a psychophysical model capturing
basic parameters of the ANS in the context of
cross-notational approximate addition and subtrac-
tion problems. We replicated a previously reported
tendency to underestimate during numeric esti-
mation tasks. We report an internal Weber fraction
well in line with previously reported values. Most
importantly, we replicated the operational momen-
tum effect, not only in purely nonsymbolic con-
ditions but also in cross-notational trials. Relative
to subtractions, additions were associated with
larger responses. An overall miscalibration—that
is, a tendency to over- or underestimate the
results with respect to the correct outcome—was
superimposed on this arithmetic bias. Depending
on the particular notation, participants over- or
underestimated with respect to the actual
outcome. By combining the participant-specific
ANS parameters in a simple model we were able
to correct for this overall miscalibration during
nonsymbolic and cross-notational arithmetic oper-
ations. However, the model was unable to account
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for the operation-specific bias. This suggests that
the operational momentum effect has its origin in
factors outside the ANS that remain to be modelled
in future studies.

Supplemental material

Supplemental content providing additional visualiza-
tions of the results from the numerosity estimation
task, the numerosity comparison task, and the calcu-
lation task is available via the “Supplemental” tab on
the article’s online page (http://dx.doi.org/10.1080/
17470218.2014.890234).
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